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Abstract

Some generalizations of Pascal’s triangle are stated along with some
formulas - accompanied with their proofs - for the sums of entries in the
rows of those generalizations. The paper ends in a formula that gives the
row sum for any given triangle.

1 Introduction

Although it is attributed to the french mathematician Blaise Pascal who, in
1665, solved probability problems using known properties of the triangle, Pas-
cal’s triangle was invented by a Persian mathematician who was born more than
half a millennium before Pascal [3], called Al-Kharaji (953-1029). The triangle
has many other inventors (or more precisely contributors) in China and Europe.

Formulas for row sums of Pascal’s triangle and its generalizations (also
known as Pascalized Triangles) are as diverse as the triangle’s inventors. The
paper aims to get formulas for the row sums of Pascal’s triangle and some of
its generalizations. Afterwards, the paper generalizes a formula for any given
triangle.

Pascal’s triangle can be constructed by putting 1s on the outer diagonals of
the triangle and generating the entry on the n-th row and the k-th column, Tn,k,
by using two entries from the previous row according to the following equation:

Tn,k = Tn−1,k + Tn−1,k−1 (1)

Pascal’s triangle could be generalized in two main ways:

♢ Substituting 1s on the outer diagonals by Fibonacci numbers or other sets
like those in section (2).
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♢ Making each entry in any row the result of using more than two entries
from the previous row. More formally, substituting Formula (1) by other
formulas like those in section (3).

It is well known that the sum of entries on the n-th row of the original Pascal
triangle is 2n. There are two main proofs for those formulas: one comes from
the combinatorial interpretation of the triangle [1] and the other from the fact
that each entry is the result of the contribution of two entries from the previous
row.

Our question is whether we can obtain a formula for any triangle formed by
the formula (1) or not, and the answer is clearly yes.

Theorem 1. For any n ≥ 1, the sum of entries of the n-th row, R(n), is worked
out by the following recursive formula:

R(n) = 2 ·R(n− 1) + Tn,0 + Tn,n − Tn−1,n−1 − Tn−1,0 (2)

Proof. R(n) =
∑n

k=0 Tn,k, where as equation 1 does not work for entries Tn,0

and Tn,n, R(n) could be best written as:

R(n) = Tn,0 +

n∑
k=1

Tn,k + Tn,n

By substituting with equation 1, the formula becomes:

R(n) = Tn,0 +

n−1∑
k=1

Tn−1,k +

n−1∑
k=1

Tn−1,k−1 + Tn,n

Writing the formula in terms of the sum of entries of the previous row:

R(n) = Tn,0 +R(n)− Tn−1,0 +R(n)− Tn−1,n−1 + Tn,n

Rearranging gives us our target equation (2) ■

Since all the entries on the diagonals of Pascal’s triangle are equal and the
0-th row has the sum 20, it is obvious why equation (2) results in the 2n relation.
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2 Set-Pascalized Triangles

This section will talk about the first type of Pascalized Triangles, which are
triangles formed by replacing 1s on Pascal’s Triangle by other sets. The first
subsection provides formal proofs for formulas that other people have worked
out by observation. The second subsection discusses a triangle that is an original
work by the authors of the paper.

2.1 Formulas by other scholars

Noah Carey and Greg Dresden [2] formulated various formulas regarding the
sums of rows of triangles formed with Pascal’s rule (1) but with different sets
on the outer diagonals; however, those formulas lacked formal proofs. In this
section, the usage of formula (2) in proving those formulas will be shown.

Triangle Sets on two Diagonals Formula

Pascal-Lucas Lucas on both 2(2n+1 − Ln+1)
Lucas-Counting Lucas and Counting 3(2n)− Ln+1 − 1

Fibonacci-Counting Fibonacci and Counting 2n+1 − Fn+1 − 1
Tribonacci-One Tribonacci and Ones 5(2n−1) + Tn − Tn+3

Table 1: Formulas by Noah Carey and Greg Dresden

♢ Lucas numbers are numbers with base case L0 = 2, L1 = 1. They have
the basic identity:

Ln = Ln−1 + Ln−2 (3)

♢ Fibonacci numbers are numbers with base case F0 = 0, F1 = 1. They have
the basic identity:

Fn = Fn−1 + Fn−2 (4)

♢ Tribonacci numbers are numbers with base case T0 = 0, T1 = 1, T2 = 1.
They have the basic identity:

Tn = Tn−1 + Tn−2 + Tn−3 (5)

♢ Counting numbers are the numbers 1, 2, 3, . . . , n
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2.1.1 Pascal-Lucas

The Pascal-Lucas triangle contains Lucas numbers on both diagonals and ap-
pears in the OEIS [Online Encyclopedia of Integer Sequences] as the entry
A347584.

n = 0 2
n = 1 1 1
n = 2 3 2 3
n = 3 4 5 5 4
n = 4 7 9 10 9 7
n = 5 11 16 19 19 16 11
n = 6 18 27 35 38 35 27 18

Table 2: First Rows of the Pascal-Lucas triangle

Theorem 2. In Lucas-Pascal Triangle, for any n ≥ 0, the sum of entries in
the n-th row, R(n), is calculated using this formula:

R(n) = 2(2n+1 − Ln+1) (6)

Proof. The proof will proceed by induction, where by substituting 0 in equation
(6), we get 2. That is correct by observation. Now, we can assume, for the
purpose of induction, that the equation holds for all n. Then, we can use the
equation (2) with substituting all Tn,k with the suitable Lucas. We get the
following:

R(n+ 1) = 2 ·R(n) + 2 · Ln+1 − 2 · Ln

Then by using the inductive hypothesis and rearranging terms:

R(n+ 1) = 2n+3 − 2 · Ln+1 − 2 · Ln

Using the basic Lucas Identity (3) and rearranging terms, we get to the answer.

R(n+ 1) = 2(2n+2 − Ln+2)

That is the result of substituting n + 1 in the equation (6), which means that
the induction holds. ■
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2.1.2 Lucas-Counting

The Lucas-Counting triangle contains Lucas numbers on one diagonal and the
counting numbers on the other.

n = 0 1
n = 1 1 1
n = 2 3 2 2
n = 3 4 5 4 3
n = 4 7 9 9 7 4
n = 5 11 16 18 16 11 5
n = 6 18 27 34 34 27 16 6

Table 3: First Rows of the Lucas-Counting triangle

Theorem 3. In Lucas-Counting Triangle, for any n ≥ 0, the sum of entries in
the n-th row, R(n), is calculated using this formula:

R(n) = 3(2n)− Ln+1 − 1 (7)

Proof. The proof will proceed by induction. By substituting 0 in equation (7),
we get 1. That holds true by observation. Now, we can assume, for the purpose
of induction, that the equation holds for all n. Then, we can use the equation
(2), substituting all Tn,k with the suitable Lucas and counting numbers. We get
the following:

R(n+ 1) = 2 ·R(n) + Ln+1 + n+ 1− n− Ln

Then by using the inductive hypothesis and rearranging terms:

R(n+ 1) = 3(2n+1)− Ln+1 − Ln − 1

Using the basic Lucas Identity (3) and rearranging terms, we get to the answer.

R(n+ 1) = 3(2n+1)− Ln+2 − 1

That is the result of substituting n + 1 in the equation (7), which means that
the induction holds. ■
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2.1.3 Fibonacci-Counting

The Fibonacci-Counting triangle contains the Fibonacci numbers on one diag-
onal and the counting numbers on the other.

n = 0 0
n = 1 1 1
n = 2 1 2 2
n = 3 2 3 4 3
n = 4 3 5 7 7 4
n = 5 5 8 12 14 11 5
n = 6 8 13 20 26 25 16 6

Table 4: First Rows of the Fibonacci-Counting triangle

Theorem 4. In Fibonacci-Counting Triangle, for any n ≥ 0, the sum of entries
in the n-th row, R(n), is calculated using this formula:

R(n) = 2n+1 − Fn+1 − 1 (8)

Proof. The proof will proceed by induction. By substituting 0 in equation (8),
we get 0. That is correct by observation. Now, we can assume, for the purpose
of induction, that the equation holds for all n. Then, we can use the equation
(2) with substituting all Tn,k with the suitable Fibonacci and counting numbers.
We get the following:

R(n+ 1) = 2 ·R(n) + Fn+1 + n+ 1− n− Fn

Then by using the inductive hypothesis and rearranging terms:

R(n+ 1) = 2n+2 − Fn+1 − 1− Fn

Using the basic Fibonacci Identity (4) and rearranging terms, we get to the
answer.

R(n+ 1) = 2n+2 − Fn+2 − 1

That is the result of substituting n + 1 in the equation (8), which means that
the induction holds. ■
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2.1.4 Tribonacci-One

The Tribonacci-One triangle contains the Tribonacci numbers on one diagonal
and ones on the other.

n = 0 0
n = 1 1 1
n = 2 1 2 1
n = 3 2 3 3 1
n = 4 4 5 6 4 1
n = 5 7 9 11 10 5 1
n = 6 13 16 20 21 15 6 1

Table 5: First Rows of the Tribonacci-one triangle

Theorem 5. In Tribonacci-One Triangle, for any n ≥ 1, the sum of entries in
the n-th row, R(n), is calculated using this formula:

R(n) = 5(2n−1) + Tn − Tn+3 (9)

Proof. The proof will proceed by induction. By substituting 1 in equation (9),
we get 2. That holds true by observation. Now, we can assume, for the purpose
of induction, that the equation holds for all n. Then, we can use the equation
(2), substituting all Tn,k with the suitable Tribonacci numbers and ones. We
get the following:

R(n+ 1) = 2 ·R(n) + Tn+1 + 1− 1− Tn

Then by using the inductive hypothesis and rearranging terms:

R(n+ 1) = 5(2n) + Tn+1 − 2 · Tn+3 + Tn

Using the basic Tribonacci Identity (5) and rearranging terms, we get to the
answer.

R(n+ 1) = 5(2n) + Tn+1 − Tn+4

That is the result of substituting n + 1 in the equation (9), which means that
the induction holds. ■
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2.2 Alternating Fibonacci-Lucas Triangle

The alternating Fibonacci-Lucas triangle has the sequence A005013 on both of
its diagonals. The sequence has Fn for even n and Ln for odd n. It is necessary
to know that there is a relation between Fn and Ln for all n.

Ln = Fn−1 + Fn+1 (10)

See the alternating sequence and the first few rows of the triangle.

seq 0 1 2 3 4 5 6 7 8 9 10 11 12

Fib 0 1 1 2 3 5 8 13 21 34 55 89 144
Luc 2 1 3 4 7 11 18 29 47 76 123 199 322

A005013 0 1 1 4 3 11 8 29 21 76 55 199 144

Table 6: Formation of Sequence A005013

n = 0 0
n = 1 1 1
n = 2 1 2 1
n = 3 4 3 3 4
n = 4 3 7 6 7 3
n = 5 11 10 13 13 10 11
n = 6 8 21 23 26 23 11 8

Table 7: Rows of the alternating triangle

This time, the triangle has 2 formulas: one for even rows, and one for odd
rows. That implies the necessity of proving each formula separately. Although
we will need to prove that R(n) → R(n + 2) for both even and odd n, we will
use the previous technique in proofs. Before moving to the proofs, two lemmas
should be proven.
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Lemma 1. For n ≥ 1, the following holds:

2 · Ln+4 + 2 · Ln+2 = 10 · Ln+1 + 10 · Fn−1 (11)

Proof. The proof will proceed by stating that the R.H.S is equal to the L.H.S.

L.H.S = 2 · Ln+4 + 2 · Ln+2, and using the formula (10), we get 2 · Fn+5 +
4 · Fn+3 + 2 · Fn+1. Now, we can repeatedly use equation (4) to get 10 · Fn+3.

R.H.S = 10 ·Ln+1+10 ·Fn−1. By using the formula (10), we get 10 ·Fn+2+
10 · Fn + 10 · Fn−1. Now, we can repeatedly use equation (4) to get 10 · Fn+3

Since R.H.S became equal to L.H.S, the lemma is true. ■

Lemma 2. For n ≥ 1, the following holds:

6 · Ln+1 + 6 · Ln−1 + 20 · Ln = 10 · Fn+1 + 10 · Ln+2 (12)

Proof. The proof will proceed by stating that the R.H.S is equal to the L.H.S.

L.H.S = 6 ·Ln+1 +6 ·Ln−1 +20 ·Ln, where by using the equation (10), we
can get the following formula: 6 ·Fn+2+12 ·Fn+6 ·Fn−2+20 ·Fn−1+20 ·Fn+1.
Here, using the basic the basic Fibonacci identity (4) in a repetitive manner
gives the final shape: 40 · Fn+1 + 10 · Fn.

R.H.S = 10 · Fn+1 + 10 ·Ln+2, where we can easily use the formula (10) to
get the Fibonacci-only form: 10 · Fn+1 + 10 · Fn+3 + 10 · Fn+1, and finally, the
basic Fibonacci identity (4) gives us the final form: 40 · Fn+1 + 10 · Fn.

Since R.H.S became equal to L.H.S, the lemma is true. ■

Dividing both Lemma (1) and (2) by 5 gives us the following two equations:

2

5
· Ln+4 +

2

5
· Ln+2 = 2 · Ln+1 + 2 · Fn−1 (13)

6

5
· Ln+1 +

6

5
· Ln−1 + 4 · Ln = 2 · Fn+1 + 2 · Ln+2 (14)
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Theorem 6. For all even n ≥ 0, the sum of entries in the n-th row, R(n) is:

R(n) =
14

5
· 2n − 2

5
Ln+4 (15)

Proof. The proof will proceed by induction. First, by using 0 as a base case, we
get 0 as L4 = 7 from table (6). The base case clearly holds true by observing
the triangle. Let’s assume that the equation (15) is true for all even n for the
purpose of induction. At first, we can use equation (2) to obtain the sum of
entries in the n+ 1−th row. That gives us

R(n+ 1) = 2 ·R(n) + Tn+1,0 + Tn+1,n+1 − Tn,n − Tn,0

We can now apply the equation (2) again to get the formula of R(n+2) in terms
of R(n)

R(n+ 2) = 4 ·R(n) + Tn+2,n+2 + Tn+2,0 + Tn+1,0 + Tn+1,n+1 − 2Tn,n − 2Tn,0

We will replace all odd terms with Ln and all even ones with Fn (definition
of the sequence (6)). Also, we should use the basic definition of Fibonacci:
Equation (4), so that we can get the following:

R(n+ 2) = 4 ·R(n) + 2 · Fn−1 + 2 · Ln+1

Replacing R(n) with the inductive hypothesis, we reach

R(n+ 2) =
14

15
· 2n+2 − 2

5
Ln+6 −

2

5
· Ln+4 −

2

5
· Ln+2 + 2 · Fn−1 + 2 · Ln+1

Using the equality relation of Lemma (1), we can get the final form:

R(n+ 2) =
14

15
· 2n+2 − 2

5
Ln+6

That is the result of using equation (15) with n + 2, where since the equation
holds for the base case, and R(n) → R(n + 2), the equation is accurate for all
even n. ■
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Theorem 7. For all odd n ≥ 1, the sum of entries in the n-th row, R(n) is:

R(n) =
14

5
· 2n − 6

5
Ln+1 (16)

Proof. The proof will proceed by induction. First, by using 1 as a base case, we
get 2 as L2 = 3 from table (6). The base case clearly holds true by observing
the triangle. Let’s assume that the equation (16) is true for all odd n for the
purpose of induction. At first, we can use equation (2) to get the sum of entries
in the n+ 1−th row. That gives us

2 ·R(n) + Tn+1,0 + Tn+1,n+1 − Tn,n − Tn,0

We can again apply the equation (2) to get the formula of R(n+ 2) in terms of
R(n)

4 ·R(n) + Tn+2,n+2 + Tn+2,0 + Tn+1,0 + Tn+1,n+1 − 2Tn,n − 2Tn,0

Replacing all odd terms with Ln and even ones with Fn (definition of the se-
quence (6)), We observe the following:

4 ·R(n) + 2 · Ln+2 + 2 · Fn+1 − 4 · Ln

Replacing R(n) with the inductive hypothesis, we reach

14

15
· 2n+2 − 6

5
Ln+3 −

6

5
· Ln+1 −

6

5
· Ln−1 + 2 · Ln+2 + 2 · Fn+1 − 4 · Ln

Using the equality relation of Lemma (2), we can get the final form:

14

15
· 2n+2 − 6

5
Ln+3

That is the result of using equation (16) with n + 2, where since the equation
holds for the base case, and R(n) → R(n + 2), the equation is accurate for all
odd n. ■
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3 K-Pascal Generalizations

Those Pascalized triangles are ones formed by using an arbitrary set on the
diagonals (maybe 1s as Pascal did or other sets as those used in subsection
(2.1); however, those generalizations are special because they use a formula
other than formula (1), used by Pascal. Each subsection will discuss a certain
k-pascal generalization, and the last subsection gives a generalized theorem for
all k-pascal generalizations.

3.1 4-pascal Generalizations

In this generalization, each entry is the sum of the four entries above it, where
an entry in the normal Pascal Triangle is the sum of the two entries above it.
Moreover, Tn,k is defined as being 0 for k < 0 or k > n.

Tn,k = Tn−1,k−1 + Tn−1,k + Tn−1,k+1 + Tn−1,k+2 (17)

The sum of entries of the n-th row in the 4-Pascal triangle can be achieved
through the following recursive formula:

R(n) = 4·R(n−1)+Tn,0+Tn,n−2·Tn−1,0−Tn−1,1−Tn−1,n−2−2·Tn−1,n−1 (18)

Proof. The proof will proceed in a way similar to that of (2). First it is known
that:

R(n) =

n∑
k=0

Tn,k

By using formula (17), we get:

R(n) =

n∑
k=0

Tn−1,k +

n∑
k=0

Tn−1,k+1 +

n∑
k=0

Tn−1,k−1 +

n∑
k=0

Tn−1,k−2

Since equation (17) is defined as being zero for both k < 0 and k > n, it is more
accurate to write the previous equation as:

R(n) = Tn,0 + Tn,1 + Tn,n−1 + Tn,n

+

n−2∑
k=2

Tn−1,k +

n−2∑
k=2

Tn−1,k+1 +

n−2∑
k=2

Tn−1,k−1 +

n−2∑
k=2

Tn−1,k−2
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Writing the summations in terms of R(n), we get:

R(n) = Tn,0 + Tn,1 + Tn,n−1 + Tn,n+

R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,n−1+

R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,2+

R(n− 1)− Tn−1,0 − Tn−1,n−2 − Tn−1,n−1+

R(n− 1)− Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1

Grouping R(n-1)s together and substituting terms from the n-th row with equiv-
alent terms from the n− 1-th row whenever possible, we get the following:

R(n) = Tn,0 + Tn,n + 4R(n− 1)

+ Tn−1,1 + Tn−1,2 + Tn−1,0 + Tn−1,n−1 + Tn−1,n−2 + Tn−1,n−3

− Tn−1,0 − Tn−1,1 − Tn−1,n−1

− Tn−1,0 − Tn−1,1 − Tn−1,2

− Tn−1,0 − Tn−1,n−2 − Tn−1,n−1

− Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1

Removing equivalent terms with opposite signs and grouping the like ones, we
get:

R(n) = Tn,0 + Tn,n + 4R(n− 1)− 2Tn−1,0 − Tn−1,1 − Tn−1,n−2 − 2Tn−1,n−1

, which is the same as equation (18). ■

Now that we have proved the sum of rows of 4-pascal triangles, we can view
two different generalizations and some facts about the sum of entries in their
rows.
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3.1.1 4-Pascal triangle

This triangle uses the equation (17), and if the terms of the equation are absent,
we substitute them with 1.

n = 0 1
n = 1 1 1
n = 2 2 2 2
n = 3 4 6 6 4
n = 4 10 16 20 16 10
n = 5 26 46 62 62 46 26
n = 6 72 134 196 216 196 134 72

Table 8: First few rows of the 4-pascal triangle

An interesting fact is that the sum of rows of this triangle can be abbreviated.
According to formula (17), the following holds:

Tn,n = Tn−1,n−1 + Tn−1,n−2, Tn,0 = Tn−1,0 + Tn−1,1

Substituting that in formula (18), we get:

R(n) = 4 ·R(n− 1)− Tn−1,0 − Tn−1,n−1 (19)

3.1.2 All-Ones 4-Pascal triangle

This triangle is formed the same way as the triangle (8); however, diagonals are
restricted to always have 1’s on the outer diagonals. That triangle appears on
the encyclopedia as the entry A356692

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 4 4 1
n = 4 1 9 10 9 1
n = 5 1 20 29 29 20 1
n = 6 1 50 79 98 79 50 1

Table 9: First few rows of the all-ones 4-pascal triangle

An interesting fact is that the sum of rows of this triangle (Equation (18))
can be abbreviated as Tn,n = Tn,0 = Tn−1,n−1 = Tn−1,0 = 1 to be

R(n) = 4 ·R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,n−2 − Tn−1,n−1 (20)
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3.2 6-Pascal triangle

Analogous to the 4-Pascal triangle, each entry in the 6-Pascal triangle is the
sum of the six entries above it. More precisely, the following equation holds
whenever k >= 0 and k <= n. Otherwise, the entry is considered to be 0.

Tn,k = Tn−1,k + Tn−1,k+1 + Tn−1,k+2 + Tn−1,k−1 + Tn−1,k−2 + Tn−1,k−3 (21)

Since it is similar to both the normal Pascal triangle and the 4-Pascal triangle,
it is expected to find a recursive formula for the sum of entries in the n-th row.

R(n) = 6R(n− 1) + Tn,0 + Tn,n

− 3Tn−1,0 − 2Tn−1,1 − Tn−1,2

− 3Tn−1,n−1 − 2Tn−1,n−2 − Tn−1,n−3

(22)

Proof. The proof will proceed in a similar way to that of both (2) and (18).
First it’s known that:

R(n) =

n∑
k=0

Tn,k

By using formula (21), we get:

R(n) =

n∑
k=0

Tn−1,k +

n∑
k=0

Tn−1,k+1 +

n∑
k=0

Tn−1,k+2+

n∑
k=0

Tn−1,k−1 +

n∑
k=0

Tn−1,k−2 +

n∑
k=0

Tn−1,k−3

Since equation (21) is defined as being zero for both k < 0 and k > n, it is more
accurate to write the previous equation as:

R(n) = Tn,0 + Tn,1 + Tn,2 + Tn,n−2 + Tn,n−1 + Tn,n+

n−3∑
k=3

Tn−1,k +

n−3∑
k=3

Tn−1,k+1 +

n−3∑
k=3

Tn−1,k+2+

n−3∑
k=3

Tn−1,k−1 +

n−3∑
k=3

Tn−1,k−2 +

n−3∑
k=3

Tn−1,k−3

Writing the summations in terms of R(n), we get:

R(n) = Tn,0 + Tn,1 + Tn,2 + Tn,n−2 + Tn,n−1 + Tn,n+

R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,2 − Tn−1,n−2 − Tn−1,n−1+

R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,2 − Tn−1,3 − Tn−1,n−1+

R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,2 − Tn−1,3 − Tn−1,4+

R(n− 1)− Tn−1,0 − Tn−1,1 − Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1+

R(n− 1)− Tn−1,0 − Tn−1,n−4 − Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1+

R(n− 1)− Tn−1,n−5 − Tn−1,n−4 − Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1
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Grouping R(n-1)s together and substituting terms from the n-th row with equiv-
alent terms from the n− 1-th row whenever possible, we get the following:

R(n) = Tn,0 + Tn,n + 6R(n− 1)

+ Tn−1,1 + Tn−1,0 + Tn−1,2 + Tn−1,3

+ Tn−1,2 + Tn−1,1 + Tn−1,0 + Tn−1,3 + Tn−1,4

+ Tn−1,n−2 + Tn−1,n−1 + Tn−1,n−3 + Tn−1,n−4 + Tn−1,n−5

+ Tn−1,n−1 + Tn−1,n−2 + Tn−1,n−3 + Tn−1,n−4

− Tn−1,0 − Tn−1,1 − Tn−1,2 − Tn−1,n−2 − Tn−1,n−1

− Tn−1,0 − Tn−1,1 − Tn−1,2 − Tn−1,3 − Tn−1,n−1

− Tn−1,0 − Tn−1,1 − Tn−1,2 − Tn−1,3 − Tn−1,4

− Tn−1,0 − Tn−1,1 − Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1

− Tn−1,0 − Tn−1,n−4 − Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1

− Tn−1,n−5 − Tn−1,n−4 − Tn−1,n−3 − Tn−1,n−2 − Tn−1,n−1

Removing equivalent terms with opposite signs and grouping the like ones, we
get:

R(n) = Tn,0 + Tn,n + 6R(n− 1)

− 3Tn−1,0 − 2Tn−1,1 − Tn−1,2

− 3Tn−1,n−12Tn−1,n−2 − Tn−1,n−3

, which is the same as equation (22). ■
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3.3 8-Pascal-Triangle

Analogous to the 6-Pascal triangle, each entry in the 8-Pascal triangle is the
sum of the eight entries above it. More precisely, the following equation holds
whenever k >= 0 and k <= n. Otherwise, the entry is considered to be 0.

Tn,k =Tn−1,k + Tn−1,k+1 + Tn−1,k+2 + Tn−1,k+3+

Tn−1,k−1 + Tn−1,k−2 + Tn−1,k−3 + Tn−1,k−4

(23)

Since it’s similar to the normal Pascal triangle, the 4-Pascal triangle, and the
6-pascal-triangle, it is expected to find a recursive formula for the sum of entries
in the n-th row.

R(n) = 8R(n− 1) + Tn,0 + Tn,n

− 4Tn−1,0 − 3Tn−1,1 − 2Tn−1,2 − Tn−1,3

− 4Tn−1,n−1 − 3Tn−1,n−2 − 2Tn−1,n−3 − Tn−1,n−4

(24)

Proof. The proof will proceed in a way similar to that of both (2), (18), and
(22). First it’s known that:

R(n) =

n∑
k=0

Tn,k

By using formula (21), we get:

R(n) =

n∑
k=0

Tn−1,k +

n∑
k=0

Tn−1,k+1 +

n∑
k=0

Tn−1,k+2 +

n∑
k=0

Tn−1,k+3+

n∑
k=0

Tn−1,k−1 +

n∑
k=0

Tn−1,k−2 +

n∑
k=0

Tn−1,k−3 +

n∑
k=0

Tn−1,k−4

Since equation (23) is defined as being zero for both k < 0 and k > n, it is more
accurate to write the previous equation as:

R(n) = Tn,0 + Tn,1 + Tn,2 + Tn,3+

Tn,n−3 + Tn,n−2 + Tn,n−1 + Tn,n+

n−4∑
k=4

Tn−1,k +

n−4∑
k=4

Tn−1,k+1 +

n−4∑
k=4

Tn−1,k+2 +

n−4∑
k=4

Tn−1,k+3+

n−4∑
k=4

Tn−1,k−1 +

n−4∑
k=4

Tn−1,k−2 +

n−4∑
k=4

Tn−1,k−3 +

n−4∑
k=4

Tn−1,k−4

Writing the summations in terms of R(n), grouping R(n-1)s together, and sub-
stituting terms from the n-th row with equivalent terms from the n− 1-th row
whenever possible (similar to the proof of formula (22), we can get formula (24).

■
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3.4 Generalization for any k-pascal triangle

Noticing the similarity between formulas (2), (18), (22), and (24), the authors
can obtain a theorem.

Theorem 8. For all even k, where k is the number of elements of the n− 1-th
row that contribute to each single entry in the n-th row, the sum of entries in
the n-th row can be concluded recursively using the following equation:

R(n) = k ·R(n− 1) + Tn,0 + Tn,n −
k/2∑
i=1

Tn−1,k+i−1 −
k/2∑
i=1

Tn−1,n−i (25)

There is no formal proof for this equation, but the authors of this paper do
encourage further research on ways to prove this formula.

4 Conclusion

The main formulas of sum of rows of Pascal’s Triangle could be feasibly gener-
alized into other formulas, according to the type of the generalization. Many
interesting formulas like those provided in the research paper could be generated
by creatively fluctuating the sets on the diagonals or the ways of getting the
k-th entry of the n-th row.
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